Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int Rev Cell Mol Biol ; 385: 41-99, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38663962

RESUMO

Gastrointestinal carcinomas are a group of cancers associated with the digestive system and its accessory organs. The most prevalent cancers related to the gastrointestinal tract are colorectal, gall bladder, gastric, hepatocellular, and esophageal cancers, respectively. Molecular aberrations in different signaling pathways, such as signal transduction systems or developmental pathways are the chief triggering mechanisms in different cancers Though a massive advancement in diagnostic and therapeutic interventions results in improved survival of patients with gastrointestinal cancer; the lower malignancy stages of these carcinomas are comparatively asymptomatic. Various gastrointestinal-related cancers are detected at advanced stages, leading to deplorable prognoses and increased rates of recurrence. Recent molecular studies have elucidated the imperative roles of several signaling pathways, namely Wnt, Hedgehog, and Notch signaling pathways, play in the progression, therapeutic responsiveness, and metastasis of gastrointestinal-related cancers. This book chapter gives an interesting update on recent findings on the involvement of developmental signaling pathways their mechanistic insight in gastrointestinalcancer. Subsequently, evidences supporting the exploration of gastrointestinal cancer related molecular mechanisms have also been discussed for developing novel therapeutic strategies against these debilitating carcinomas.


Assuntos
Progressão da Doença , Neoplasias Gastrointestinais , Humanos , Neoplasias Gastrointestinais/patologia , Neoplasias Gastrointestinais/metabolismo , Animais , Carcinogênese/patologia , Carcinogênese/metabolismo , Transdução de Sinais
2.
Artigo em Inglês | MEDLINE | ID: mdl-38231063

RESUMO

BACKGROUND: Oxidative stress refers to non-homeostatic elevation within intracellular reactive oxygen species (ROS) levels and is associated with several neuro-related pathological conditions. Diclofenac is a commonly prescribed non-steroidal anti-inflammatory drug (NSAID) for treating aches and pain by reducing inflammation. Diclofenac is also associated with the induction of apoptotic cell death by altering the homeostatic balance within mitochondria. In the present report, the neuroprotective effects of BNC formulation constituted by Bacopa monnieri leaves, Nigella sativa and Curcuma longa rhizome seeds were investigated. METHODS: The synthesized formulation was characterized using FT-IR and LC-MS along with organoleptic evaluation. Thereafter neuroprotective efficacy of BNC formulation was subsequently investigated against Diclofenac-induced oxidative stress in SH-SY5Y cells. The cells were pretreated with synthesized formulation and subsequently evaluated for amelioration in Diclofenac-induced cytotoxicity, and ROS augmentation. The neuroprotective effect of synthesized formulation was further explored by evaluating the changes in nuclear morphology, and apoptosis alleviation with concomitant regulatory effects on caspase-3 and -9 activation. RESULTS: Diclofenac was found to be considerably cytotoxic against human neuroblastoma SHSY5Y cells. Intriguingly, Diclofenac-mediated toxicity was reduced significantly in SH-SY5Y cells pretreated with BNC formulation. Augmented ROS levels within Diclofenac-treated SHSY5Y cells were also reduced in the BNC formulation pretreated SH-SY5Y cells. Furthermore, BNC formulation pretreated SH-SY5Y cells also exhibited reduced dissipation of mitochondrial membrane potential, caspase-3 and -9, along with apoptosis after Diclofenac treatment. CONCLUSION: These findings indicated that, indeed, Diclofenac induces considerable ROSmediated apoptosis in SH-SY5Y cells, which further intriguingly ameliorated Diclofenacmediated cytotoxic effects on SH-SY5Y cells. This manuscript further collected information about available National and International patents published or granted in preparation of and thereof applications against motor and non-motor brain dysfunctions.

3.
Front Pharmacol ; 14: 1194578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915418

RESUMO

In the current study, we report the synthesis of methotrexate-conjugated zinc oxide nanoparticles (MTX-ZnONPs) and their high efficacy against lung cancer cells. Conjugation of MTX with ZnONPs was authenticated by UV-vis spectroscopy, dynamic light scattering (DLS), Fourier-transform infrared (FTIR) spectroscopy, and transmission electron microscopy (TEM). This drug-nanoconjugate also showed high drug-loading efficiency. The therapeutic efficacy of MTX-ZnONPs was further tested in vitro against A549 cells, and the results of MTT and LDH release assays showed that MTX-ZnONPs, in addition to free MTX, were efficient in exerting cytotoxic effect on A549 cells; however, the effectiveness of MTX-ZnONPs was found to be considerably enhanced at very low doses compared to that of free MTX. Moreover, ZnONPs alone significantly inhibited the cell viability of A549 cells at a much higher concentration compared to MTX-ZnONPs and MTX. Furthermore, the cytomorphology of A549 cells was characterized by cellular shrinkage and detachment from the surface in all the treatment groups. Similarly, A549 cells, in all the treatment groups, showed fragmented and condensed nuclei, indicating the initiation of apoptosis. Mitochondrial membrane potential (ψm) in A549 cells showed a gradual loss in all the treatment groups. Results of the qualitative and quantitative analyses depicted increased reactive oxygen species (ROS) levels in A549 cells. The results of the caspase activity assay showed that MTX-ZnONPs andfree MTX caused significant activation of caspase-9, -8, and -3 in A549 cells; however, the effect of MTX-ZnONPs was more profound at very low doses compared to that of free MTX. Thus, our results showed high efficacy of MTX-ZnONPs, suggesting efficient intracellular delivery of the drug by ZnONPs as nanocarriers.

4.
Metabolites ; 13(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37110139

RESUMO

The Wnt signaling pathway is reported to be associated with lung cancer progression, metastasis and drug resistance, and thus it is an important therapeutic target for lung cancer. Plants have been shown as reservoirs of multiple potential anticancer agents. In the present investigation, the ethanolic leaf extract of Artemisia vulgaris (AvL-EtOH) was initially analyzed by means of gas chromatography-mass spectrometry (GC-MS) to identify the important phytochemical constituents. The GC-MS analysis of AvL-EtOH exhibited 48 peaks of various secondary metabolites such as terpenoids, flavonoids, carbohydrates, coumarins, amino acids, steroids, proteins, phytosterols, and diterpenes. It was found that the treatment with increasing doses of AvL-EtOH suppressed the proliferation and migration of lung cancer cells. Furthermore, AvL-EtOH induced prominent nuclear alteration along with a reduction in mitochondrial membrane potential and increased ROS (reactive oxygen species) generation in lung cancer cells. Moreover, AvL-EtOH-treated cells exhibited increased apoptosis, demonstrated by the activation of caspase cascade. AvL-EtOH also induced downregulation of Wnt3 and ß-catenin expression along with cell cycle protein cyclin D1. Thus, the results of our study elucidated the potential of bioactive components of Artemisia vulgaris in the therapeutic management of lung cancer cells.

5.
Chem Biol Drug Des ; 101(4): 962-976, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36651797

RESUMO

The successful chemotherapeutic regime required for the clinical management of different cancers largely depends on the efficient drug delivery within the cancer cells. Exosomes have emerged as an enticing candidate for exploring their role as delivery vehicles. Exosomes are reported to be intrinsically nanosized vesicles competent for efficient delivery across the cellular membrane. In the present study, we assessed the feasibility of an autologous exosome-based drug delivery platform for delivering 5-Fluorouracil (5-FU) against human colon cancer HCT116 cells. Autologous exosomes have shown probable tropism toward the tumor microenvironment, which makes them the most competitive vehicle for drug delivery. It was observed that the autologous exosomes loaded with 5-FU showed an enhanced rate of drug release under acidic conditions. The result of the cell viability assay showed that treatment of 5-FU-loaded exosomes (equivalent to 5 µg 5-FU) resulted in enhanced cytotoxic effect in HCT116 cells as compared to an equivalent amount of free 5-FU (5 µg), which elucidated the efficient delivery of the 5-FU by exosomes inside the cancer cells. Subsequently, 5-FU-loaded exosomes led to increased nuclear condensation and fragmentation along with increased ROS production. In addition, 5-FU-loaded exosomes caused enhanced dissipation of mitochondrial membrane potential and caspase-3 activation, resulting in increased apoptosis induction. Our study also revealed that 5-FU-loaded exosomes upsurged the arrest in the cell cycle at the G0/G1 stage in HCT-116 cells and it was found to be associated with decreased CDK4 and Cyclin D1 expression concomitantly with the upregulation of CDK inhibitor, p21Cip1 expression. Thus, the findings from the present study highlight the advantages of autologous exosomes as a natural drug carrier which could efficiently deliver chemotherapeutic drugs to cancer cells.


Assuntos
Antineoplásicos , Neoplasias do Colo , Exossomos , Humanos , Fluoruracila , Exossomos/metabolismo , Exossomos/patologia , Apoptose , Neoplasias do Colo/metabolismo , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Microambiente Tumoral
6.
J Food Biochem ; 46(10): e14368, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35945689

RESUMO

Liver cancer or hepatocellular carcinoma (HCC) has become a leading cause for cancer burden across the globe, and incidences have tripled since the last two decades. Poor diagnosis of primary liver cancer and limited treatment strategies aggravate the challenges. Researchers globally have shown a steep inclination toward the exploration of plant-based compounds for their nutraceutical and anticancer potential to fit into the role of novel chemotherapeutics. Coleus aromaticus is a well-known culinary herb that earlier has been reported for several medicinal attributes. The current investigation deals with exploring the anticancer potential of ethanolic leaf extract of C. aromaticus (CoL-EtOH) against hepatocellular carcinoma HepG2 cell line. The observations made it evident that CoL-EtOH extract impeded the viability of HepG2 at 400 µg/ml (p < .01). Additionally, the extract also succeeded in escalating ROS production (p < .01) which aided dissipation of mitochondrial membrane potential and disruption of nuclear morphology. CoL-EtOH further activated caspase-8, -9, and -3 which was reaffirmed by increase in apoptosis at 400 µg/ml (p < .01). Moreover, post treatment with CaLEt-OH extract significantly reduced the expression of JAK-1 & STAT-3 genes (p < .01) along with regulated expression of Mcl1, Bcl-2, cyclinD1, p21, and p27 within HepG2 cells. This evidence portrays the promising anticancer potential of CoL-EtOH projecting it as a novel chemotherapeutic agent against HCC. PRACTICAL APPLICATIONS: The herb Coleus aromaticus belonging to Lamiaceae family and Coleus genus is known by various names in different regions of the world and several language-specific vernacular names. The herb has been used in therapeutic and medicinal applications as well as in culinary preparations. Various attributes of the nutritional strength and functional characteristics of the leaves in terms of carotenoids, minerals, phenols, dietary fiber, and antioxidant activity have been reported by several researchers. Carvacrol and thymol are majorly found in the plant, while chlorogenic acid and rosmarinic acid etc. as the phenolic components. The herb has been used in therapeutic and medicinal implications as well as in culinary preparations.


Assuntos
Carcinoma Hepatocelular , Coleus , Neoplasias Hepáticas , Antioxidantes , Apoptose , Carcinoma Hepatocelular/tratamento farmacológico , Carotenoides , Caspase 8 , Proliferação de Células , Ácido Clorogênico , Fibras na Dieta , Etanol , Células Hep G2 , Humanos , Janus Quinases/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fenóis , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio , Fatores de Transcrição STAT/metabolismo , Timol
7.
Front Pharmacol ; 13: 847534, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928278

RESUMO

Adenium obesum commonly known as "desert rose" belongs to the family Apopcynaceae and has previously been reported for its anti-influenza, antimicrobial, and cytotoxic efficacies and well-known for their ethno-medicinal applications. In the present study, ethanolic extracts of A. obesum (AOE) were analyzed by gas chromatography-mass spectrometry (GC-MS) to identify the important phytochemical compounds. The GC-MS analysis of AOE detected the presence of 26 phytochemical compounds. This plant is traditionally used for the treatment of various diseases. In this report, the antioxidant, anti-inflammatory, and anticancer activities of ethanolic leaf extract from A. obesum (AOE) were studied. The antioxidant potential of ethanolic extract of AOE was examined by different antioxidant assays, such as antioxidant capacity by the DPPH, ABTS, superoxide, hydroxyl radical scavenging, and lipid peroxidation inhibition assays. The antioxidant activities of various reaction mixtures of AOE were compared with a reference or standard antioxidant (ascorbic acid). In addition, we also evaluated the anticancer activity of AOE, and it was observed that AOE was found to be cytotoxic against A549 lung cancer cells. It was found that AOE inhibited the viability of A549 lung cancer cells by inducing nuclear condensation and fragmentation. Furthermore, ethanolic AOE demonstrated the anti-inflammatory potential of AOE in murine alveolar macrophages (J774A.1) as an in vitro model system. AOE showed its potential in reducing the levels of inflammatory mediators including the proinflammatory cytokines and TNF-α. The results obtained in the present investigation established the antioxidant, anticancer, and anti-inflammatory potency of AOE, which may account for subsequent studies in the formulation of herbal-based medicine.

8.
Saudi J Biol Sci ; 29(5): 3264-3275, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35844403

RESUMO

Cervical cancer (CCa) is the second most frequent carcinoma in females and human papilloma virus (HPV) oncoproteins are regarded as one of the critical etiological agent. Despite recent advances in screening and management of CCa, still it remains the deadliest carcinoma as advanced and metastatic stages are mostly incurable. This urges for the development of newer therapeutic interventions. The current was aimed to investigate the antiproliferative and apoptotic potential of glycyrrhizin (Gly) against HPV16+ CaSki CCa cells. Our findings substantiated that Gly exerted antiproliferative effects on the CaSki cells by obstructing their proliferation rate. Gly substantially enhanced apoptosis in Caski cells in a dose-dependent manner via augmenting the generation of ROS, DNA fragmentation and disruption of the mitochondrial membrane potential. Gly mediated apoptosis in CaSki cells was found to be due to activation of caspase-8 and capsase-9 along with the modulation of pro-and anti-apoptotic gene expression. Moreover, Gly halts the progression of CaSki cells at G0/G1 phase which was found to be due to reduced expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) along with the enhanced expression of CDK inhibitor p21Cip1. Further, Gly downregulates the expression of HPV oncoproteins (E6 & E7) along with the inhibition of Notch signaling pathway. Taken together, Gly represents as a potential therapeutic modality for CCa which could rapidly be translated for clinical studies.

9.
Molecules ; 27(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35458790

RESUMO

This study reports the therapeutic effectiveness of doxorubicin-conjugated zinc oxide nanoparticles against lung cancer cell line. The zinc oxide nanoparticles (ZnONPs) were first synthesised using a fungus, isolated from air with an extraordinary capability to survive in very high concentrations of zinc salt. Molecular analysis based on 18S rRNA gene sequencing led to its identification as Aspergillus niger with the NCBI accession no. OL636020. The fungus was found to produce ZnONPs via the reduction of zinc ions from zinc sulphate. The ZnONPs were characterised by various biophysical techniques. ZnONPs were further bioconjugated with the anti-cancer drug doxorubicin (DOX), which was further confirmed by different physical techniques. Furthermore, we examined the cytotoxic efficacy of Doxorubicin-bioconjugated-ZnONPs (DOX-ZnONPs) against lung cancer A549 cells in comparison to ZnONPs and DOX alone. The cytotoxicity caused due to ZnONPs, DOX and DOX-ZnONPs in lung cancer A549 cells was assessed by MTT assay. DOX-ZnONPs strongly inhibited the proliferation of A549 with IC50 value of 0.34 µg/mL, which is lower than IC50 of DOX alone (0.56 µg/mL). Moreover, DOX-ZnONPs treated cells also showed increased nuclear condensation, enhanced ROS generation in cytosol and reduced mitochondrial membrane potential. To investigate the induction of apoptosis, caspase-3 activity was measured in all the treated groups. Conclusively, results of our study have established that DOX-ZnONPs have strong therapeutic efficacy to inhibit the growth of lung cancer cells in comparison to DOX alone. Our study also offers substantial evidence for the biogenically synthesised zinc oxide nanoparticle as a promising candidate for a drug delivery system.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Nanopartículas , Óxido de Zinco , Células A549 , Antineoplásicos/farmacologia , Aspergillus niger , Doxorrubicina/farmacologia , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Zinco , Óxido de Zinco/farmacologia , Óxido de Zinco/uso terapêutico
10.
Nutr Cancer ; 74(2): 622-639, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33691557

RESUMO

Growing emphasis on exploring the antiproliferative potential of natural compounds has gathered momentum for the formulation of anticancer drugs. In the present study, the anticancer and apoptotic potential of glycyrrhizin (GLY) was studied on HPV- C33A cervical cancer (CCa) cells. Our results indicated that GLY exerted antiproliferative effects in the C33A cells by inducing significant cytotoxicity. Treatment with GLY substantially increases the apoptosis in a dose-dependent manner via disrupting the mitochondrial membrane potential. GLY induced apoptosis in C33A cells via activation of capsase-9 (intrinsic pathway) and caspase-8 (extrinsic pathway) along with the modulation of pro- and antiapoptotic protein expression. Moreover, GLY also exerted cell cycle arrest in C33A cells at G0/G1 phase which was associated with the decreased expression of cyclin D1 and cyclin-dependent kinase 4 (CDK4) along with the increased expression of CDK inhibitor p21Cip1. Furthermore, GLY treated CCa cells exhibited significant downregulation of Notch signaling pathway which may be associated with increased apoptosis as well as cell cycle arrest in C33A CCa cells. Thus, GLY could be an appendage in the prevention and management of CCa.


Assuntos
Neoplasias do Colo do Útero , Apoptose , Ciclo Celular , Pontos de Checagem do Ciclo Celular , Linhagem Celular Tumoral , Inibidor de Quinase Dependente de Ciclina p21/genética , Regulação para Baixo , Feminino , Ácido Glicirrízico/farmacologia , Ácido Glicirrízico/uso terapêutico , Humanos , Neoplasias do Colo do Útero/tratamento farmacológico
11.
Front Chem ; 10: 1064191, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36712982

RESUMO

Recent times have seen a strong surge in therapeutically targeting the hedgehog (HH)/GLI signaling pathway in cervical cancer. HH signaling pathway is reported to be a crucial modulator of carcinogenesis in cervical cancer and is also associated with recurrence and development of chemoresistance. Moreover, our previous reports have established that carvacrol (CAR) inhibited the proliferation of prostate cancer cells via inhibiting the Notch signaling pathway and thus, it was rational to explore its antiproliferative effects in cervical cancer cell lines. Herein, the present study aimed to investigate the anticancer and apoptotic potential of CAR on C33A cervical cancer cells and further explore the underlying mechanisms. We found that CAR significantly suppressed the growth of C33A cells, induced cell cycle arrest, and enhanced programmed cell death along with augmentation in the level of ROS, dissipated mitochondrial membrane potential, activation of caspase cascade, and eventually inhibited the HH signaling cascade. In addition, CAR treatment increased the expression of pro-apoptotic proteins (Bax, Bad, Fas-L, TRAIL, FADDR, cytochrome c) and concomitantly reduced the expression of anti-apoptotic proteins (Bcl-2 and Bcl-xL) in C33A cells. CAR mediates the activation of caspase-9 and -3 (intrinsic pathway) and caspase-8 (extrinsic pathway) accompanied by the cleavage of PARP in cervical cancer cells. Thus, CAR induced apoptosis by both the intrinsic and extrinsic apoptotic pathways. CAR efficiently inhibited the growth of cervical cancer cells via arresting the cell cycle at G0/G1 phase and modulated the gene expression of related proteins (p21, p27, cyclin D1 and CDK4). Moreover, CAR inhibited the HH/GLI signaling pathway by down regulating the expression of SMO, PTCH and GLI1 proteins in cervical carcinoma cells. With evidence of the above results, our data revealed that CAR treatment suppressed the growth of HPV-C33A cervical cancer cells and further elucidated the mechanistic insights into the functioning of CAR.

12.
J Food Biochem ; 45(12): e14010, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34796513

RESUMO

Globally, cancer is one of the deadliest diseases, estimated to cause 9.9 million deaths in 2020. Conventional cancer treatments commonly involve mono-chemotherapy or a combination of radiotherapy and mono-chemotherapy. However, the negative side effects of these approaches have been extensively reported and have prompted the search for new therapeutic drugs. Over the past few years, numerous dietary agents, medicinal plants, and their phytochemicals gained considerable therapeutic importance because of their anticancer, antiviral, anti-inflammatory, and antioxidant activities. Recent years have shown that essential oils possess therapeutic effects against numerous cancers. They are primarily used due to their lesser side effects than standard chemotherapeutic drugs. Carvacrol (CRV) is a phenolic monoterpenoid found in essential oils of oregano, thyme, pepperwort, wild bergamot, and other plants. Numerous anticancer reports of CRV substantiated that the main mechanistic action of CRV involves reduction in the viability of cancer cells and induction of apoptosis via both intrinsic and extrinsic pathways. CRV also obstructs the migration and invasion of cells leading to the suppressed proliferation rate. Furthermore, CRV mediates augmented ROS generation resulting in DNA damage and also halts the progression of cell cycle. Treatment of CRV modulates the expression of apoptotic proteins (Bax, Bad) and molecular targets of various signaling pathways (PI3K/AKT/mTOR, MAPKs, and Notch) in multiple solid carcinomas. Hence, this review aimed to acquire and disseminate the knowledge of chemopreventive and anticancer effects of CRV and the mechanisms of action already described for the compound against numerous cancers, including solid carcinomas, to guide future research. PRACTICAL APPLICATIONS: Development and formulation of phytocompound based anticancer drug agents to counteract the aftereffects of chemotherapeutic drugs is a propitious approach. CRV is a monoterpenoid consisting of a phenolic group obtained from the essential oils of oregano and thyme. These plants are being used as food flavoring spice and as fragrance ingredient in various cosmetic formulations. For the use of CRV as an efficient chemopreventive agent, different therapeutic interactions of CRV along with its targeted pathways and molecules, involved in the regulation of onset and progression of various types of solid carcinomas, need to be studied and explored thoroughly.


Assuntos
Carcinoma , Fosfatidilinositol 3-Quinases , Cimenos , Humanos , Monoterpenos/farmacologia , Monoterpenos/uso terapêutico
13.
Saudi J Biol Sci ; 28(11): 6279-6288, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34764752

RESUMO

Lung carcinoma is the leading cause of cancer-related mortalities worldwide, and present therapeutical interventions are not successful enough to treat this disease in many cases. Recent years have witnessed a surge in exploring natural compounds for their antiproliferative efficacy to expedite the characterization of novel anticancer chemotherapeutics. Swertia chirayita is a valued medicinal herb and possess intrinsic pharmaceutical potential. However, elucidation of its anticancer effects at molecular levels remains unclear and needs to be investigated. We assessed the anticancer and apoptotic efficacy of S. chirayita ethanolic extract (Sw-EtOH) on non-small cell lung cancer (NSCLC) A549 cells during this exploratory study. The results elucidated that S. chirayita extract induced toxic effects within lung cancer cells by ~1 fold during cytotoxicity and LDH release assay at a 400 µg/ml concentration. Sw-EtOH extract elevates the level of ROS, resulting in the disruption of Δψm and release of cytosolic cytochrome c by 3.15 fold. Activation of caspases-3, -8 & -9 also escalated by ~1 fold, which further catalyze the augmentation of PARP cleavage (~3 folds), resulting in a four-fold increase in Sw-EtOH induced apoptosis. The gene expression analysis further demonstrated that Sw-EtOH extracts inhibited JAK1/STAT3 signaling pathway by down-regulating the levels of JAK1 and STAT3 to nearly half a fold. Treatment of Sw-EtOH modulates the expression level of various STAT3 associated proteins, including Bcl-XL, Bcl-2, Mcl-1, Bax, p53, Fas, Fas-L, cyclinD1, c-myc, IL-6, p21 and p27 in NSCLC cells. Thus, our study provided a strong impetus that Sw-EtOH holds the translational potential of being further evaluated as efficient cancer therapeutics and a preventive agent for the management of NSCLC.

14.
Artigo em Inglês | MEDLINE | ID: mdl-34061008

RESUMO

Presently the world is witnessing the most devastating pandemic in the history of mankind caused by Severe Acute Respiratory Syndrome or SARS-CoV-2. This dreaded pandemic is responsible for escalated mortality rates across the globe and this is the worst catastrophe in the history of mankind. Since its outbreak, substantial scientific explorations focusing on the formulation of novel therapeutical and/or adjunct intervention against the disease are continuously in the pipeline. However, till date, no effective therapy has been approved and hence the present alarming situation urges the necessity of exploring novel, safe and efficient interventional strategies. Functionally, terpenoids are a class of secondary plant metabolites having multi facet chemical structures and are categorically documented to be the largest reservoir of bioactive constituents, predominant in nature. Intriguingly, very little is scientifically explored or reviewed in regards to the anti-CoV-2 attributes of terpenoids. The present article thus aims to revisit the antiviral efficacy of terpenoids by reviewing the current scientific literature and thereby provide an opinion on the plausibility of exploring them as potential therapeutical intervention to deal with ongoing CoV-2 pandemic.


Assuntos
Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Terpenos/uso terapêutico , Animais , Antivirais/efeitos adversos , COVID-19/fisiopatologia , COVID-19/virologia , Interações Hospedeiro-Patógeno , Humanos , SARS-CoV-2/patogenicidade , Terpenos/efeitos adversos
15.
Anticancer Agents Med Chem ; 21(16): 2224-2235, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33390139

RESUMO

BACKGROUND: The carcinogenesis of the uterine cervix is predominantly initiated with the consistent infection of the Human Papilloma Virus (HPV). Owing to the side effects of standard chemotherapeutics in the treatment of recurrent and metastatic cervical cancer, there is a need for a better and effective treatment modality. In this lieu of concern, natural compounds have proven their worthwhile potential against the treatment of various carcinomas. Carvacrol is a phenolic monoterpenoid and several reports have suggested its different biological properties including antioxidant, anti-inflammatory and anticancer activity. OBJECTIVE: The objective of our present study was to investigate the effect of carvacrol on HPV18+ HeLa cervical cancer cells. METHODS: HeLa cervical cancer cells were cultured and subsequently treated with various doses of carvacrol. Cell viability was assessed via MTT assay. DAPI and Hoechst3342 staining were used to qualitatively analyzed the induced apoptosis. Reactive Oxygen Species (ROS) was estimated by DCFDA staining protocol and quantitatively estimated by flow cytometry. The cell cycle distribution and apoptosis (FITC-Annexin V assay) were analyzed by flow cytometry. RESULTS: The results of the present study have established that carvacrol strongly suppresses the proliferation of cervical cancer cells via caspase-dependent apoptosis and abrogation of cell cycle progression. Furthermore, our preliminary study also demonstrated that carvacrol exhibits a synergistic effect with chemotherapeutic drugs (5-FU and carboplatin). These initial findings implicated that natural compounds could reduce the toxic effects of chemotherapeutic drugs. CONCLUSION: Therefore, this investigation affirms the anti-cancer potential of carvacrol against cervical cancer cells, which could be an appendage in the prevention and treatment of cervical cancer.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Inibidores de Caspase/farmacologia , Cimenos/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células HeLa , Humanos , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
16.
Curr Mol Med ; 21(5): 402-416, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32981505

RESUMO

Cervical cancer, cancer arising from the uterine cervix, has been regarded as the fourth most frequent gynecological malignancy among females worldwide. Epidemiological reports have shown that uterine cervical cancer is a global health issue among women of especially developing countries and consequently creates an economic and medical burden in the society. The main causative agent of cervical carcinoma is high-risk human papilloma virus (HPV 16 and HPV 18). Molecular studies have revealed the expression of two viral genes E6 and E7, after HPV infection in the epithelial cells of the cervix. These gene products are known to inactivate the major tumor suppressors, p53 and retinoblastoma protein (pRB), respectively. Moreover, the role of self-renewal pathways, such as Hedgehog, Notch, and Wnt, has also been linked with drug resistance in cancer cells and epithelial mesenchymal transition during metastasis in the pathogenesis of cervical cancer. Although the mechanism of interaction of HPV E6 and E7 with each and every component of the above described developmental pathways is not elucidated yet, preliminary reports of their cross-talk have begun to emerge. Understanding the interplay between these oncoproteins and developmental/self-renewal pathways is highly important in terms of designing new and targeted therapeutic approaches against cervical cancer. Hence, this review cynosure the carcinogenesis of HPV with a brief description of its virology and also establishes the cross-talk between oncoproteins E6 and E7 and Hedgehog, Notch, and Wnt signaling pathway.


Assuntos
Proteínas Oncogênicas Virais/genética , Papillomaviridae/genética , Infecções por Papillomavirus/genética , Transdução de Sinais/genética , Neoplasias do Colo do Útero/virologia , Feminino , Humanos , Proteína do Retinoblastoma/genética
17.
Anticancer Agents Med Chem ; 21(3): 393-405, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32819236

RESUMO

BACKGROUND: The quest for strong, safe and cost-effective natural antiproliferative agents that could reduce cancer has been the focus now a days. In this regard, the organosulfur compounds from garlic (Allium sativum L.), like Diallyl Sulfide (DAS) and Diallyl Disulfide (DADS), have been shown to exhibit potent antiproliferative and anticancer properties in many studies. However, the potential of these compounds against viral oncoproteins in cervical cancer has not been fully elucidated yet. OBJECTIVE: The objective of this study was to analyze the antiproliferative and apoptotic properties of DADS and DAS in HPV16+ human cervical cancer Caski cell line. METHODS: Caski (cervical cancer cells) were cultured and followed by the treatment of various concentrations of organosulphur compounds (DADS and DAS), cell viability was measured by MTT assay. The apoptotic assay was performed by DAPI and Hoechst3342 staining. Reactive Oxygen Species (ROS) was estimated by DCFDA staining protocol. The distributions of cell cycle and apoptosis (FITC-Annexin V assay) were analyzed by flow cytometry. Finally, gene expression analysis was performed via quantitative real time PCR. RESULTS: Our results showed that DAS and DADS exerted a significant antiproliferative effect on Caski cells by reducing the cell viability and inducing a dose-related increment in intracellular ROS production along with apoptosis in Caski cells. DAS and DADS also induced cell cycle arrest in G0/G1 phase, which was supported by the downregulation of cyclin D1 and CDK4 and upregulation of CDK inhibitors p21WAF1/CIP1 and p27KIP1 in Caski cells. Additionally, DAS and DADS lead to the downregulation of viral oncogene E6 and E7 and restoration of p53 function. CONCLUSION: Thus, this study confirms the efficacy of both the organosulfur compounds DADS and DAS against cervical cancer cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclina D1/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Regulação para Baixo/efeitos dos fármacos , Compostos de Enxofre/farmacologia , Neoplasias do Colo do Útero/tratamento farmacológico , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclina D1/metabolismo , Quinase 4 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Compostos de Enxofre/síntese química , Compostos de Enxofre/química , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA